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Stochastic resonance for quantum channels
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The concept of stochastic resonance in nonlinear dynamics is applied to interpret the capacity of noisy
quantum channels. The two-Pauli channel is used to illustrate the idea. The fidelity of the channel is also
considered. Noise enhancement is found for the channel fidelity but not for the channel capacity.
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I. INTRODUCTION

Stochastic resonance is a phenomenon concerned
amplifying a small signal forcing a nonlinear system by a
dition of a stochastic noise to the signal@1#. The physics
behind this phenomenon is the transfer of energy from
stochastic field into some physical process with the as
tance of the signal.

Most earlier works were concerned with periodical s
nals. On the other hand, it was pointed out by Moss in 19
that one may associate the switching events in a stoch
bistable and threshold system with an information flo
through the system@2#. To consider an aperiodical signal fo
a channel performance, the peak of mutual information
tween the input signal and output signal is used as the d
nition of resonance@3–5#, because of the informax ansat
which uses the mutual information to assess different w
of information processing, and because, traditionally,
resonance condition is defined as the peak of the output
nal to noise ratio for the periodical signal case.

However, previous considerations for aperiodical sign
are for classical channels. Stochastic resonance has
studied for quantum systems@1#. It is known, for periodical
signal cases, that quantum mechanics can provide additi
routes by quantum tunneling to overcome a threshold.
classical stochastic resonance effect can be enhanced
two orders of magnitude for strongly damped system
Therefore it will be interesting to see whether, such re
nance also exits in quantum channels.

Recently, because of the development of quantum c
puters @6# people have become interested in informati
transmission through noisy quantum channels@7#. It can be
used to describe processes such as computer memo
other secondary storage, quantum cryptography@8#, and
quantum teleportation@9#. To study the noise enhanced cha
nel capacities of such channels one needs a measure for
and a measure for the channel capacities, or a measur
any other property interested. Therefore, the first prob
need to answer is: Which quantity can be used as thecorrect
measure for the resonance?

There are several such measures, analogous to the c
cal Shannon’s mutual information, emerging during t
study of quantum computing@10–12#. In this paper Schuma
cher’s formulation of coherent information is followed.
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II. NOISY CHANNEL MODEL

A quantum channel can be considered as a process
fined by an input density matrixrx , and an output density
matrix ry , with the process described by a quantum ope
tion N,

rx→
N

ry . ~1!

Because of decoherence, the superoperatorN is not unitary.
However, on a larger quantum system that includes the
vironmentE of the system, the total evolution operatorUxE
become unitary. The environment may be considered to
initially in a pure stateu0E& without loss of generality. In this
case, the superoperator can be written as

N~rx!5TrEUxE~rx^ u0E&^0Eu!UxE
† . ~2!

The partial trace TrE is taken over environmental degree
freedom. Equation~2! can be rewritten as

N~rx!5(
i

AirxAi
† , ~3!

in which theAi satisfy the completeness relation

(
i

Ai
†Ai5I , ~4!

which is equivalent to requiring Tr@N(rx)#51. Conversely,
any set of operatorsAi satisfying Eq.~4! can be used in Eq
~3! to give rise to a valid noisy channel in the sense of E
~2!. The mutual information in the classical formalism b
comes

H~x:y!5H~rx!1H„N~rx!…2He~rx ,N!, ~5!

in which H(•)52Tr• log2• is the von Neumann entrop
@13#, and

He~rx ,N![2Tr~W log2 W! ~6!

with

Wi j [Tr~AirxAj
†! ~7!

measures the amount of information exchanged between
systemx and the environmentE during their interaction@7#,
which can be used to characterize the amount of quan
2801 ©1999 The American Physical Society
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noiseN in the channel. If the environment is initially in
pure state, the entropy exchange is just the environme
entropy after the interaction.

The coherent information is defined as

C~rx ,N![HS N~rx!

Tr„N~rx!…
D2N~rx ,N!, ~8!

which plays a role in quantum information theory analogo
to that played by the mutual information in classical info
mation theory. It can be positive, negative, or zero. Furth
more, it is a function of the input state and the channel on
Although the coherence information is generally believed
represent only a lower bound on the channel capacity in
annon’s definition, it can be used to represent the chan
capacity without talking about encoding@14#.

In what follows thisC-N relationship is demonstrated b
the two-Pauli channel@15#.

III. TWO-PAULI CHANNEL

The two-Pauli channelis a noisy quantum channel on
single qubit with

A15AxI, A25A 1
2 ~12x!s1 , A352 iA 1

2 ~12x!s2 ,
~9!

where I is the identity matrix ands1 ,s2 , and s3 are the
Pauli matrices, i.e.,

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~10!

This channel has a simple interpretation: with probabilityx,
it leaves the qubit alone; with probability 12x it randomly
applies one of the two Pauli rotations to the qubit.

A general~input! state in the Bloch sphere representati
can be written as

rx5 1
2 ~ I 1aW •sW !. ~11!

Here,aW 5(a1 ,a2 ,a3) is the Bloch vector of length unity o
less, andsW is the vector of Pauli matrices. For two-sta
systems, a Bloch vectors with unity radius describe p
quantum states, those with radius less than unity descr
mixed states, and those with radius greater than unity do
describe any quantum state. The action of the channel on
density matrix is

N~rx!5 1
2 ~ I 1bW •sW !, ~12!

in which

bW 5„a1x,a2x,a3~2x21!…. ~13!

The matrixW thus computed reads
t’s

s

r-
.

o
h-
el

e
ed
ot
is

W5S x a1Ax~12x!

2
ia2Ax~12x!

2

a1Ax~12x!

2

12x

2

a3~12x!

2

2 ia2Ax~12x!

2

a3~12x!

2

12x

2

D .

~14!

The noise strength

N52(
i 51

3

l i log 2 l i ~15!

FIG. 1. Parametric plots of retention ratex vs noiseN ~solid
line!, coherence informationC vs noiseN ~long dashed lines!, and
fidelity F vs noiseN ~short dashed lines! for the parameterx from
0.0 to 0.7 and various initial states:~a! a150.1,a250.2,a350.9; ~b!
a150.3,a250.4,a350.2; ~c! a150.6,a250.3,a350.5; ~d! a1

50.1,a250.2,a350.3.
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with l i been the eigenvalues of theW matrix, while

H~ry!52(
i 51

2

u i log2 u i , ~16!

with u1,25@16A(a1
21a2

2)x21a3
2(122x)2#/2. The noise en-

hancement can be investigated by looking for some ini
states (a1 ,a2 ,a3) and flipping ratex, where the slope of
]C/]N.0. However, in practice it is difficult to calculat
such function analytically and obtain useful results. So
examples of the capacity-noise relation are plotted in Fig
For all cases we tried we find no such enhancement. H
ever, at some range of noise the capacity is not a sin
valued function. With a proper choice of the flipping rate o
can indeed have higher capacity. This is a result of the fl
ping ratex been a nonmonotonic function of the noise
shown in the solid lines of Fig. 1. A moderate flipping ra
actually reduce the noise for all cases plotted. For a com
nication channel the~entangled! fidelity,

F5(
m

~Tr rxAm!~Tr rxAm
† !, ~17!

is also of our concern, since it represent the quality of
signal transmitted. For the two-Pauli channel

F5 1
2 ~a1

21a2
2!~12x!1x, ~18!

they are plotted along with the coherent information in F
1. The fidelity do exhibit noise enhancement clearly
v.
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shown in Figs. 1~b!–1~d!. For the best performance of
channel, there are some tradeoffs between the fidelity and
capacity. It is interesting to notice the capacity-noise cu
becomed cusp and eventually collapses into a line as
approaches the Bloch sphere. Note that, some people m
think fidelity can be used as a measure of the noise stren
However, it is only anindirect measure. It measures the e
fect of the noise instead of the noise itself. As shown in
figures, the fidelity is close to the noise in some cases.

IV. CONCLUSION

In summary, ‘‘quantum stochastic resonance’’ in a qua
tum communication channel is considered in the pres
work. A ‘‘resonance’’ of the channel capacity is not found
the two-Pauli channel. On the other hand, they do have n
enhanced fidelity. However, the classical stochastic re
nance phenomenon is a result of interplay between prob
listic and deterministic evolutions. Such interplay is ma
fested in the coherence of quantum states. As the dissipa
enhanced quantum channel capacity is consistent with
results found in periodical forced quantum systems, it is v
possible for stochastic resonance of both fidelity and cap
ity to exits on other types of sources, channels and e
definition of capacity and fidelity. There might have subtle
among different channels, as people have found in the c
of stochastic resonances that various potential wells will
sult in slightly different resonance conditions. They are u
der further investigation.
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