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Stochastic resonance for quantum channels
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The concept of stochastic resonance in nonlinear dynamics is applied to interpret the capacity of noisy
guantum channels. The two-Pauli channel is used to illustrate the idea. The fidelity of the channel is also
considered. Noise enhancement is found for the channel fidelity but not for the channel capacity.
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I. INTRODUCTION Il. NOISY CHANNEL MODEL

Stochastic resonance is a phenomenon concerned with A quantum channel can be considered as a process de-
amplifying a small signal forcing a nonlinear system by ad-fined by an input density matrig,, and an output density
dition of a stochastic noise to the sigrfd]]. The physics matrix p,, with the process described by a quantum opera-
behind this phenomenon is the transfer of energy from th&ion N,
stochastic field into some physical process with the assis- N
tance of the signal. Px— Py - @

Most earlier works were concerned with periodical sig- _ )
nals. On the other hand, it was pointed out by Moss in 198decause of decoherence, the superopevit not unitary.
that one may associate the switching events in a stochastfidowever, on a larger quantum system that includes the en-
bistable and threshold system with an information flowVironmentE of the system, the total evolution operatdge
through the systerf2]. To consider an aperiodical signal for P€COMe unitary. The environment may be considered to be
a channel performance, the peak of mutual information bellitially in @ pure statgOg) without loss of generality. In this
tween the input signal and output signal is used as the deffase: the superoperator can be written as
nm_on of resonanc¢3—5]_, because of the mform_ax ansatz, N(Px)zTrEUxE(px®|OE>(OE|)UIE- 2)
which uses the mutual information to assess different ways
of information processing, and because, traditionally, theThe partial trace T is taken over environmental degree of
resonance condition is defined as the peak of the output sigreedom. Equatiori2) can be rewritten as
nal to noise ratio for the periodical signal case.

However, previous considerations for aperiodical signals
are for classical channels. Stochastic resonance has been N(Px)=2 AipAT ©)
studied for quantum systens]. It is known, for periodical
signal cases, that quantum mechanics can provide additiongl which theA, satisfy the completeness relation
routes by quantum tunneling to overcome a threshold. The
classical stochastic resonance effect can be enhanced up to S AlA=|
two orders of magnitude for strongly damped systems. P
Therefore it will be interesting to see whether, such reso-
nance also exits in quantum channels. which is equivalent to requiring TV(p,)]=1. Conversely,

Recently, because of the development of quantum comany set of operatord; satisfying Eq.(4) can be used in Eq.
puters [6] people have become interested in information(3) to give rise to a valid noisy channel in the sense of Eq.
transmission through noisy quantum channéls It can be  (2). The mutual information in the classical formalism be-
used to describe processes such as computer memory @smes
other secondary storage, quantum cryptograp8ly and
quantum teleportatiof®]. To study the noise enhanced chan- H(x:y)=H(px) + HNp,))—He(px, N), 5
nel capacities of such channels one needs a measure for noise )
and a measure for the channel capacities, or a measure fir Which H(-)=—Tr-log,- is the von Neumann entropy
any other property interested. Therefore, the first problen513]' and
need to answer is: Which quantity can be used astneect
measure for the resonance?

There are several such measures, analogous to the clasgjip
cal Shannon’s mutual information, emerging during the
study of quantum computind0-12. In this paper Schuma- W, ETr(Aiprj’f) (7)
cher’s formulation of coherent information is followed.

4

He(px . N)=—Tr(Wlog, W) (6)

measures the amount of information exchanged between the
systemx and the environmert during their interactio7],
*Electronic address: jlting@yahoo.com which can be used to characterize the amount of quantum
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noise N in the channel. If the environment is initially in a
pure state, the entropy exchange is just the environment's
entropy after the interaction.

The coherent information is defined as

(a)

/\/(Px)

C(perEH<—

TG NP @

HoN wo e Uy 3

which plays a role in quantum information theory analogous 12 3 4 5 6 7
to that played by the mutual information in classical infor-
mation theory. It can be positive, negative, or zero. Further-
more, it is a function of the input state and the channel only.
Although the coherence information is generally believed to
represent only a lower bound on the channel capacity in Sh-
annon’s definition, it can be used to represent the channel
capacity without talking about encoding4].

In what follows thisC-N relationship is demonstrated by
the two-Pauli channdll5].

Ill. TWO-PAULI CHANNEL

The two-Pauli channels a noisy quantum channel on a
single qubit with

Ar=VXl, A=Vi(1-X)ay, Ag=—iVi(1-X)ay,

9

wherel is the identity matrix andr;,0,, and o3 are the
Pauli matrices, i.e.,

01 0 —i 1 0
"1:(1 o)’ “Zz(i o)’ “3:<o —1)' (10

This channel has a simple interpretation: with probabiity
it leaves the qubit alone; with probability-1x it randomly
applies one of the two Pauli rotations to the qubit.

A general(input) state in the Bloch sphere representation
can be written as

FIG. 1. Parametric plots of retention ratevs noiseN (solid
line), coherence informatiof vs noiseN (long dashed lings and
fidelity F vs noiseN (short dashed linggor the parametex from
0.0 to 0.7 and various initial stateg) a;=0.1a,=0.2a3;=0.9; (b)

Here,a=(a;,a,,as) is the Bloch vector of length unity or 2:=0.38,=0.485=0.2; (c) 2,=0.62,=0.335=0.5; (d) &

- . . =0.1a,=0.2a5=0.3.
less, ando is the vector of Pauli matrices. For two-state 0.12,=0.28;=0.3
systems, a Bloch vectors with unity radius describe pure

px=3(1+a-a). (12)

quantum states, those with radius less than unity described X Y LSl X(1=x)
mixed states, and those with radius greater than unity do not 2 2
describe any quantum state. The action of the channel on this X(1—X) 1-x az(1—x)
density matrix is w=| @& 2 2 2
N .o ) X(1—X) asz(1—x) 1-x

Mpx)=§(|+b~0), (12) —la; 2 2 2

in which (14
The noise strength
b= (alx,azx,a3(zx_ 1)) (13) 3
N=—2 \ilogz )\, (15

The matrixW thus computed reads i=1
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with \; been the eigenvalues of th& matrix, while shown in Figs. b)-1(d). For the best performance of a
channel, there are some tradeoffs between the fidelity and the
capacity. It is interesting to notice the capacity-noise curve
H(Py):_zl 6ilogz 6 , (16) becomed cusp and eventually collapses into a line as one
approaches the Bloch sphere. Note that, some people might
with 6, ,=[1+ V(ai+a5) x>+ a§(1—2x)2]/2. The noise en- think fidelity can be used as a measure of the noise strength.
hancement can be investigated by looking for some initiaFfowever, it is only arindirect measure. It measures the ef-
states elva21a3) and f||pp|ng rateX, Where the Slope Of feCt Of the n(l)lse. InS.tead Of the nOISQ |tse|f As ShOWI’l n the
aC/IN>0. However, in practice it is difficult to calculate figures, the fidelity is close to the noise in some cases.
such function analytically and obtain useful results. Some
examples of the capacity-noise relation are plotted in Fig.1.
For all cases we tried we find no such enhancement. How- IV. CONCLUSION

ever, at some range of noise the capacity is not a single | summary, “quantum stochastic resonance” in a quan-

\clglr?ier? dzjggt;]oar:/'e\/\(:;[hhaePzgpzrcﬁho'_?ﬁigfi;h: :lézﬂ'l?%frat‘;i(;lri'e_tum communication channel is considered in the present
) 9 pacity. ; : Pivork. A “resonance” of the channel capacity is not found in
ping ratex been a nonmonotonic function of the noise as

shown in the solid lines of Fig. 1. A moderate flipping rate the two-Pau'Ii channel. On the other hanq, they do haye noise
actually reduce the noise for aI'I céses plotted. For a comm enhanced fidelity. H_owever, the _Classwal stochastic reso-
nication channel théentangled fidelity ) Lhar_we phenomen_o_n is a resul_t of mterplay betweer_1 proba_b|-
' listic and deterministic evolutions. Such interplay is mani-
fested in the coherence of quantum states. As the dissipation
F=E (TrpXAM)(TI’pXAL), a7 enhanced quantum channel capacity is consistent with the
o

results found in periodical forced quantum systems, it is very
is also of our concern, since it represent the quality of thé)OSSIb|e for stochastic resonance of both fidelity and capac-

2

signal transmitted. For the two-Pauli channel ity to exits on other types of sources, channels and even
' definition of capacity and fidelity. There might have subtlety
F=1(a?+a2)(1—x)+Xx, (18  among different channels, as people have found in the cases

of stochastic resonances that various potential wells will re-
they are plotted along with the coherent information in Fig.sult in slightly different resonance conditions. They are un-
1. The fidelity do exhibit noise enhancement clearly asder further investigation.
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